
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

1

Abstract—More and more, NASA will rely on concepts from

autonomous systems, not only in mission control centers on the
ground, but also on spacecraft and on rovers and other space
assets on extraterrestrial bodies. Autonomy facilitates not only
reduced operations costs, but also adaptable goal-driven
functionality of mission systems. Space missions lacking
autonomy will be unable to achieve the full range of advanced
mission objectives, given that human control under dynamic
environmental conditions will not be feasible due, in part, to the
unavoidably high signal propagation latency and constrained
data rates of mission communications links.

While autonomy supports cost-effective accomplishment of
mission goals, autonomicity supports survivability of remote
mission assets, especially when tending by humans is not feasible.
In principle, the properties of autonomic systems may enable
space missions of a higher order than any previously flown.
Analysis of two NASA agent-based systems previously
prototyped, and of a proposed future mission involving numerous
cooperating spacecraft, illustrates how autonomous and
autonomic system concepts may be brought to bear on future
space missions.

Index Terms— Autonomous Systems, Autonomic Systems,
Multi-Agent Technology, Intelligent Systems, Spacecraft.

I. INTRODUCTION
ith NASA’s renewed commitment to space exploration,
particularly missions to Mars and the return to the
Moon, greater emphasis is being placed on both human

and robotic exploration. In reality, even when humans are
involved in the exploration, human tending of space assets
becomes cost-prohibitive or is simply not feasible, and,

Manuscript received October 15, 2004. This work was supported in part

by the NASA Office of Safety and Mission Assurance, Software Assurance
Research Program.

Walter F. Truszkowski is with the Advanced Architectures and Automation
Branch (Code 588), NASA Goddard Space Flight Center, Greenbelt, MD
20771 USA (email: Walter.F.Truszkowski@nasa.gov)

Michael G. Hinchey is with the NASA Software Engineering Laboratory at
Goddard Space Flight Center, Greenbelt, MD 20771 (tel: 301 286 9057, fax:
301 286 5719, email: Michael.G.Hinchey@nasa.gov).

James L. Rash is with the Advanced Architectures and Automation Branch
(Code 588), NASA Goddard Space Flight Center, Greenbelt, MD 20771 USA
(email: James.L.Rash@nasa.gov).

Christopher A. Rouff is with the Advanced Concepts Business Unit,
Science Applications International Corporation, McLean, VA 22102 USA
(email: rouffc@saic.com).

therefore, increasingly in future missions, remote mission
assets will be required to work autonomously.

Moreover, much of the mission control work on Earth will
be performed by fully computerized systems operating with
little or no human intervention. In addition, certain
exploration missions will require spacecraft that will be
capable of venturing where humans simply cannot be sent.
Spacecraft that, for cost or practical reasons to be described
below, cannot be tended at all times by humans will be
required to work autonomously.

Though autonomy will be critical for future missions, it will
be essential that these missions exhibit autonomic properties.
Autonomy alone, absent autonomicity, will leave the
spacecraft vulnerable to the harsh environment in which they
have to operate, and in which, most likely, performance will
degrade, or in which the spacecraft will be destroyed or will
not be able to recover from faults. Ensuring that exploration
spacecraft are endowed with autonomic properties will
increase the survivability and therefore the likelihood of
success of these missions.

The remainder of this paper first discusses the need for
autonomy and autonomicity in future NASA missions, and
then discusses the autonomic properties of three systems: two
multi-agent systems developed at NASA Goddard Space
Flight Center (GSFC) prior to the advent of the Autonomic
Computing initiative, and a concept mission that is currently
planned to launch in the 2020 to 2030 timeframe. It is
interesting to note that the previously prototyped systems
(LOGOS and ACT) were found to require autonomic
properties, although the initiative had not be formulated at that
point. The concept mission (ANTS) is being defined with
autonomicity in mind. We will describe the exhibition of
autonomic properties of each of these systems, illustrating why
future space exploration missions will necessarily be
autonomic. We then conclude with some challenges in
developing autonomic systems for future NASA missions.

II. AUTONOMY AND AUTONOMICITY IN NASA MISSIONS

A. Autonomy
Until the mid-1980s, all space missions were operated

manually from ground control centers. The high costs of
satellite operations prompted NASA, and others, to begin
automating as many functions as possible. In this context, a

Autonomous and Autonomic Systems:
A Paradigm for Future Space Exploration Missions

Walter F. Truszkowski, Member, IEEE, Michael G. Hinchey, Senior Member, IEEE,

James L. Rash, Member, IEEE, and Christopher A. Rouff, Member, IEEE

W

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

2

system is autonomous if it can achieve its goals without
human intervention. A number of more-or-less automated
ground systems exist today, but work continues towards the
goal of reducing operations costs to even lower levels. Cost
reductions can be achieved in a number of areas; greater
autonomy of satellite ground control and spacecraft operations
are two such areas.

To develop greater autonomy for ground and space
operations, NASA is putting more reliance on “intelligent”
systems, and less on human intervention. Intelligent systems
will be able to make more of the operational and science
decisions that are normally made by humans. This will allow
spacecraft to respond more quickly to opportunistic science as
well as respond faster to spacecraft anomalies, time sensitive
problems, or even routine operational issues. In addition, as
missions become more complex, the cost of personnel
controlling missions has become a significant issue.
Increasing the levels of autonomy and intelligence exhibited
by missions will also reduce these costs.

The goals of greater autonomy have been further
complicated by NASA’s plans to use constellations and
swarms of nanosatellites for future science-data gathering.
These are significantly more complicated to operate compared
to traditional single spacecraft missions. Indeed, it may be
impossible for human operators to control such systems.
Spacecraft in swarms and constellations must communicate in
order to coordinate and cooperate with each other. Radio or
laser communications between constellation elements, or with
ground control, may suffer large propagation delays or
complete outage (e.g., due to signal blockage) for extended
periods of time. Therefore, because constellation/swarm
elements will not always be able to rely on other elements or
on ground systems, in addition to being autonomous, these
systems will need to exhibit autonomic properties to ensure
optimal performance, and even survival.

B. Autonomicity
NASA will require autonomicity to be exhibited in future

missions, in order to ensure they can operate on their own to
the maximum extent possible without human intervention or
guidance. A case can be made that all of NASA’s future
systems should be autonomic, and exhibit the four key
objective properties of autonomic systems---self-configuring,
self-optimizing, self-healing and self-protecting---together
with the attribute properties, viz. self-aware, environment-
aware, self-monitoring and self-adjusting [1]. The following
discusses the need for each of these autonomic properties in
NASA missions.

Self-configuration is needed in NASA missions because the
nature of the mission may change as time goes on. New or
different science may need to be analyzed based on data
collected. Or, if one science instrument fails or deteriorates,
another onboard instrument may need to be used instead or to
help adjust for the first’s condition. Reconfiguring the
spacecraft may be necessary when batteries or solar cells are
deteriorating. In this case unnecessary instruments or

functions may need to be shut down to reduce the electrical
load and the remaining systems reconfigured to take this into
account.

Self-optimization is needed because the spacecraft, science
instruments, and the science being collected may change as
the mission proceeds, and the instruments may need to be
adjusted or calibrated. Also, the spacecraft could optimize its
operations over time by learning more about the phenomenon
it is observing, and how, or where, to best observe it. For
constellations or swarms, vehicles will have to constantly
adjust their mutually relative positions due to drift, or
optimize themselves when members of the
constellation/swarm drop out due to malfunctions or other
problems.

Self-healing is needed when a spacecraft is damaged, its
software is corrupted, or a member of a swarm or constellation
is lost. Examples of software self-healing would be when a
spacecraft is hit by a large amount of radiation and the
memory is damaged or altered. The spacecraft would have to
recognize that the software has been modified or is not
available and then request a new version from another
spacecraft or from mission operations. Self-healing in a
swarm or constellation could include moving another
spacecraft into the place of the lost one, or requesting a
replacement.

Self-protection is needed to keep the spacecraft out of
harm’s way. An example of when self-protection is needed is
when solar flares erupt. Solar flares release charged particles
that can cause damage to electronics. In cases such as these, if
a solar flare can be detected, the spacecraft can put itself into
sleep mode until the flare passes. Another example would be
a rover on Mars. Large dust storms can cause damage to
many systems. When a dust storm is sensed, the rover could
cover itself or go to a better-protected area, such as a rock
outcropping or other sheltered area.

Clearly these objective properties, commonly referred to as
the self-CHOP properties, necessitate self-awareness and
environmental awareness, and are achieved through being
self-monitoring and self-adjusting.

C. How both combine
The best possible situation for NASA would be to be able

to launch a spacecraft and then simply receive science data
from it with no in-flight directions or corrections. NASA is
currently a long way from achieving this utopia. To reach
such a state of operations, NASA needs its missions to be both
autonomous and exhibit autonomic properties. Autonomous
systems can operate independently and achieve self-direction.
For NASA missions to be fully autonomous and achieve self-
governance and survive in harsh environments, autonomicity
is required [17].

Combining autonomy with autonomic properties will
necessitate a new set of requirements and verification
procedures above and beyond what is currently available.
NASA currently has no truly autonomous or autonomic
missions. New requirements will need to be developed for

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

3

these types of missions. While autonomy may have
similarities across missions, autonomic properties will vary
depending on the type of the system and where it would
operate. This is also true for verification of autonomous and
autonomic systems [2]. New verification procedures need to
be developed, either through direct verification, or through
simulation if direct verification is not possible. Since these
systems will be intelligent, their operation will vary over time,
and it is unlikely that the same patterns of behavior will be
exhibited on a recurring basis. As a consequence new
specification and verification methods need to be developed in
order to guarantee correct operation. This is a goal of the
FAST (Formal Approaches to Swarm Technologies) project,
described briefly in Section V.

III. OVERVIEW OF TWO AGENT-BASED SYSTEMS

A. Background
The Advanced Architectures and Automation Branch at

NASA GSFC has played a leading role in the development of
agent-based approaches as a means of realizing NASA’s
autonomy goals. The aim of this work is to transition proven
agent technology into operational NASA systems. Two major
successes include the development of the prototype Lights-
Out Ground Operations System (LOGOS) and the Agent
Concept Testbed (ACT) [3, 4].

There have been many definitions of agents and agent-
based systems [5, 6]. For the purposes of this paper, we
define an agent to be a software system that is autonomous,
and has the ability to perceive and effect its environment, and
communicate with other agents (if present). A multi-agent
system, or community of agents, is simply a collection of such
agents that collaborate and/or cooperate to accomplish a

common goal.
LOGOS was the first multi-agent system developed in the

branch and provided an initial insight into the power of agent
communities, autonomy, and autonomic properties of these
systems. It should be emphasized that while the system pre-
dates the Autonomic Computing initiative, it was clear during
development that the objective properties that we now
associate with the initiative were essential to the success of the
prototype.

Agents in the LOGOS system acted as surrogate human
controllers, and interfaced with the legacy software that
controllers normally used, as well as with humans.

Based on the successful operation of this first prototype,
development began on ACT, an environment in which richer
agent and agent-community concepts were developed through
detailed prototypes and operational ground-based and space-
based scenarios. ACT has given GSFC more experience in
architecting and developing communities of agents and
autonomous and autonomic systems, as well as giving an
improved understanding of the trade-offs and complications
that accompany such systems.

The implementation of LOGOS and ACT provided an
opportunity to exercise and evaluate the capabilities supported
by the agent architectures and refine the architectures as
required. It also provided an opportunity for space mission
designers and developers to “see” agent technology in action.
This has enabled them to make a better determination of the
role that agent technology can play in their missions. The
remainder of this section describes the LOGOS and ACT
agent communities, gives brief operational overviews of each,
and highlights the autonomic objective properties of the two
systems.

B. LOGOS
LOGOS is a proof-of-concept system consisting of a

GenSAA/
Genie
I/F Agent

AGENT COMMUNITY

Log
I/F Agent

SysMM
Agent

FIRE
Agent

Pager
I/F Agent

User
I/F Agent

MOPSS
I/F Agent

DB I/F
Agent

Archive
I/F Agent

VisAGE
I/F Agent

LOGOS
UI USER

VisAGE

Paging
System

MOPSS

GenSAA
Data Server

GenSAA/
Genie

Control
Center

Spacecraft

= Agent

= External
 System

= Data

Archive

LOGOS

LOGOS
DB

 Archive

Log

Fig. 1 LOGOS agent community and legacy software.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

4

community of autonomous software agents that cooperate in
order to perform functions previously performed by human
operators who used traditional software tools such as orbit
generators and command sequence planners. The agents were
developed in Java and used an in-house software backplane
called Workplace for communication between the agents [16].
The following discusses the LOGOS architecture and gives an
example scenario of how LOGOS works.

1) LOGOS Architecture:
The LOGOS community architecture is shown in Figure 1;

the architecture of an individual LOGOS agent is shown in
Figure 2. The LOGOS is composed of ten agents, some of
which interface with legacy software, some which perform
services for the other agents in the community, and others
which interface with an analyst or operator. All agents in the
community have the ability to communicate with all other
agents in the community.

The System Monitoring and Management Agent
(SysMMA) maintains a list of all the agents and their
addresses in the community, and provides these addresses to
other agents requesting services. When started, each agent
must register its capabilities with SysMMA and request the

addresses of other agents whose services it may need.
The Fault Isolation and Resolution Expert (FIRE) agent

resolves satellite anomalies during satellite passes. FIRE
contains a knowledge base of potential anomalies and a set of
possible fixes for each. If it does not recognize an anomaly,
or is unable to resolve it, it sends the anomaly to the user
interface agent to be forwarded to an analyst for resolution.

The User Interface Agent (UIFA) is the interface between
the agent community and the user interface that the analyst or
operator uses to interact with the LOGOS agent community.
UIFA receives notification of anomalies from the FIRE agent,
handles the logon of users to the system, keeps the user
informed with reports, and routes commands to be sent to the
satellite and other maintenance functions. If the attention of
an analyst is needed but none is logged on, UIFA will send a
request to the PAGER agent to page the required analyst.

The VisAGE Interface Agent (VIFA) interfaces with the
VisAGE 2000 data visualization system. VisAGE is used to
display spacecraft telemetry and agent log information. Real-
time telemetry information is displayed by VisAGE as it is
downloaded during a satellite pass. VIFA requests the data
from the GIFA and AIFA agents (see below). An analyst may
also use VisAGE to visualize historical information to help
monitor spacecraft health, or to determine solutions to
anomalies or other potential spacecraft problems.

The Pager Interface Agent (PAGER) is the agent
community interface to the analyst’s pager system. If an
anomaly occurs, or another situation arises that necessitates an
analyst’s attention, a request is sent to the PAGER agent,
which, in turn, causes the analyst to be paged.

The Database Interface Agent (DBIFA) and the Archive
Interface Agent (AIFA) store short term and long term data,
respectively, and the Log agent (LOG) stores agent logging
data for debugging, illustration, and monitoring purposes.
The DBIFA stores such information as the list of valid users
and their passwords; the AIFA stores telemetry data.

The GenSAA/Genie Interface Agent (GIFA) interfaces with
the GenSAA/Genie ground station software [7], which
handles communications with the spacecraft. GIFA has the
capability to download telemetry data, maintain scheduling
information, and upload commands to the spacecraft. Upon
downloading anomalies and other data from the spacecraft,
GIFA routes the data to other agents based on their requests
for information.

The MOPSS (Mission Operations Planning and Scheduling
System) Interface Agent (MIFA) interfaces with the MOPSS
ground station planning and scheduling software. MOPSS
keeps track of the satellite’s orbit, the time of the next pass,
and how long it will last. It also sends out updates to
subscribing agents when the schedule changes.

The agent architecture for LOGOS was rather simplistic
(which was some of the motivation behind development of the
ACT architecture) and consisted of three components:
Processor, ACL Messenger, and Perceptor/Effector. It also
used an in-house developed software backplane for inter-agent
communication, called Workplace, that serialized agent
messages, routed them over the Internet to the destination
agent, and then de-serialized them. The main component of
the LOGOS agents is the Processor, which contained all of the
non-communication functionality. The ACL Messenger
component performs the message sending and receiving via
Workplace, and the Perceptor/Effector interfaced with the
external legacy systems, databases, or user interfaces.

2) An Example Scenario
An example scenario of how agents in LOGOS

communicate and cooperate starts with MIFA receiving data
from the MOPSS scheduling software, which indicates that
the spacecraft will be in a contact position in two minutes.
MIFA then sends a message to the other agents, informing
them of the upcoming event, in case they need to perform
some preprocessing before the contact. When GIFA receives
the message from MIFA, it sends a message to the GenSAA
Data Server to start receiving transmissions from the control
center.

After receiving data, the GenSAA Data Server sends the
satellite data to GIFA, which has rules indicating what data to
send to which agents. As well as sending data to other agents,
GIFA also sends all engineering data to the archive agent
(AIFA) for storage, as well as trend information to the
visualization agent (VIFA). GIFA sends updated schedule
information to the scheduling agent (MIFA) and sends a

External
System(s)

LOGOS Agent Other
Agents

Workplace
ACL Messenger

Perceptor /
Effector

Processor
External
System(s)

LOGOS Agent Other
Agents

Workplace
ACL Messenger

Perceptor /
Effector

Processor

Fig. 2. Architecture of LOGOS Agent

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

5

report to the user interface agent (UIFA) to be sent on to an
analyst for monitoring purposes. If there are any anomalies,
GIFA sends them to the FIRE agent for resolution.

If there is an anomaly, the FIRE agent tries to resolve it
automatically via a knowledge base containing anomalies and
possible resolutions for each. To fix an anomaly, FIRE would
send a spacecraft command to GIFA to be forwarded on to the
spacecraft. After exhausting its knowledge base, if FIRE is
not able to fix the anomaly, it forwards the anomaly to the
user interface agent, which then pages an analyst and displays
it on the analyst’s computer for action. The analyst would
then formulate a set of commands to send to the spacecraft to
resolve the situation. The FIRE agent, upon receiving the
commands, would add the new resolution to its knowledge
base for future reference, and send the commands to the GIFA
agent, which would send them to the GenSAA/Genie system
for forwarding on to the spacecraft.

There are many other interactions going on between the
agents and the legacy software that are not covered above.
Examples include: the DBIFA requesting user logon
information from the database; the AIFA requesting archived
telemetry information from the archive database to be sent to
the visualization agent; and the pager agent sending paging
information to the paging system to alert an analyst of an
anomaly requiring attention.

C. ACT
The motivation behind ACT was to develop a more flexible

architecture than LOGOS for implementation of a wide range
of intelligent or reactive agents. After developing the
architecture, sample agents were built to simulate ground
control of a satellite constellation mission as a proof-of-
concept. The following discusses the ACT agent architecture
and gives an operational scenario using the satellite
constellation proof of concept.

1) ACT Architecture:
Agents in ACT are built using a component architecture,

where a component can be easily swapped out and replaced by
another more advanced component. This allows for easy
removal of unneeded components for reactive agents and the

inclusion of the necessary components to implement
intelligent agents. It also allows for additional unforeseen
components implemented with new AI technologies to be
added as they become available, without affecting previously
implemented components. A simple (reactive) agent can be
designed by using a minimum number of components that
receive percepts (inputs) from the environment and react
according to those percepts. A robust agent may be designed
using more complex components that allow the agent to
reason in a deliberative, reflexive, and/or social fashion. This
robust agent would maintain models of itself, other agents,
objects in the environment, and external resources. Figure 3
depicts the components involved in a robust ACT agent.

The following sections describe the components listed in
Figure 3 and the framework in which the components are
implemented.

a) Modeler: The modeling component is
responsible for maintaining the domain model of an agent,
which includes models of the environment, other agents, and
the agent itself. The Modeler receives data from the
Perceptors and agent communication components. This data
is used to update state information in its model. If the data
causes a change in a state variable, the Modeler publishes this
information to other components that have subscribed to
updates regarding that variable. The Modeler is also
responsible for reasoning with the models to act both
proactively and reactively both with the environment and
events that affect the model’s state. In the future, the Modeler
will also dynamically modify its model based on experience.

The Modeler can also handle “what-if questions.” These
questions would primarily come from the planning and
scheduling component, but may also come from other agents
or from a person who wants to know what the agent would do
in a given situation, or how a change in the agent’s
environment would affect the values in its model.

b) Reasoner: The Reasoner component works with
information in its local knowledge base, as well as with model
and state information from the Modeler, in order to make
decisions and formulate goals for the agent. This component

Features Include:
- Component-based a rchitec ture
- Distributed knowledge bases
- Pub lish/ subsc ribe mec hanism for
 information sharing among c omponents
- Capab le of reac tive, delibera tive,
 and soc ia l ac tions
- Can support multi-moda l reasoning
 (rules, c ases, models)

Benefits include:
- Robust infrastruc ture
- Easy to update
- Easy to ta ilor to a doma in
- Supports reuse

Environment

Agent
Communica tions Perceptors Effec tors

Agent
Reasoning

Execution
Modeling
And Sta te

Agenda

Output

Da ta Data

ACL

Reflex

Ac tions

Percepts

Planning
and

Sc heduling

Steps

Step
Completion
Sta tus

Plan
Requests Plans

Sta te
Info

Plans

Sta tus

Fig. 3. ACT Agent Architecture.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

6

reasons with state and model data to determine whether any
actions need to be performed to affect the agent’s
environment, change its state, perform housekeeping tasks, or
influence other general activities. The Reasoner will also
interpret and reason with agent-to-agent messages. When
action is necessary for the agent, the Reasoner will produce
goals for the agent to try to achieve. Currently, the Reasoner
works more in a reactive manner. Either an input coming in,
or a trigger from the clock, sets it in motion. Work is also
being undertaken to make the Reasoner more proactive.

c) Planner/Scheduler: The Planner/Scheduler
component is responsible for any agent-level planning and
scheduling. The planning component receives a goal or set of
goals to fulfill in the form of a plan request. This typically
comes from the Reasoner component, but may be generated
by any component in the system. At the time a plan request is
received, the planning and scheduling component acquires a
state of the agent and system, usually the current state, as well
as actions that can be performed by this agent (typically from
the modeling and state component). The planning and
scheduling component then generates a plan as a directed
graph of steps, which is composed of preconditions, an action
to perform, and expected results (postcondition). Each step is
also passed to any Domain Expert components/objects for
verification of correctness. If a step is deemed incorrect or
dangerous, the Domain Expert may provide an alternative step
or solution to be considered. Upon completion, the
Planner/Scheduler sends the plan back to the component that
requested it (usually the Reasoner). The requesting
component then either passes it on to the Agenda to be
executed or uses it for planning/what-if purposes.

d) Agenda/Executive: The Agenda and the Executive
work together to execute the plans developed by the
Planner/Scheduler. The agenda typically receives a plan from
the Reasoner, though it can receive a plan from another
component that is acting in a reactive mode. The Agenda
interacts with the Executive component to send the plan’s
steps, in order, for execution. The Agenda keeps track of
which steps are being executed, finished executing, idle, or
waiting for execution and updates the status of each step as it
moves through the execution cycle. The Agenda reports the
plan’s final completion status to the Planner and Reasoner
when the plan is complete.

The Executive executes the steps it receives from the
Agenda. If the preconditions are met, the action is executed.
When execution finishes, the Executive evaluates the post-
conditions, and generates a completion status for that step.
The completion status is then returned to the Agenda.

A watch, attached to the Executive, monitors given
conditions during execution of a set of steps. Watches allow
the Planner to flag things that have to be “looked out for”
during real-time execution, which can be used to provide
“interrupt’’ capabilities within the plan. An example would
be to monitor drift from a guide star while performing an
observation. If the drift exceeds a threshold, then the
observation is halted. In such a case, the watch would notify

the Executive, which in turn would notify the Agenda. The
Agenda would then inform the Reasoner that the plan failed
and the goal was not achieved. The Reasoner would then
formulate another goal (e.g., recalibrate the star tracker).

e) Agent Communications: The agent communication
component is responsible for sending and receiving messages
to/from other agents. The component takes an agent data
object that needs to be transmitted to another agent and
converts it to a message format understandable by the
receiving agent. The message format being used is based on
Foundation for Intelligent Physical Agents (FIPA) [8]
standards, and messages are sent to the appropriate agent
using the Workplace messaging backbone.

The reverse process occurs for an incoming message. The
communications component takes the message and converts it
to an internal object and sends it to the other components that
are subscribing to incoming messages. The communications
component can also have reactive behavior, where, for a
limited number of circumstances, it produces an immediate
response to a message.

f) Perceptors/Effectors: The Perceptors are
responsible for monitoring the environment on behalf of the
agent. An example of an environment is a spacecraft
subsystem. Any data received by the agent from the
environment, other than agent-to-agent messages, enters
through Perceptors. An agent may have zero or more
Perceptors, where each Perceptor receives information from
specific parts of the agent’s environment. A Perceptor may
just receive data and pass it on to another component in the
agent, or it may perform some simple filtering/conversion
before passing it on. A Perceptor may also be designed to act
intelligently through the use of reasoning systems. If an agent
is not monitoring the environment, then it would not have any
Perceptors (an example of this would be an agent that only
provides expertise, such as fault resolution, to other agents).

The Effector is responsible for effecting or sending output
to the agent's environment. Any agent output data, other than
agent-to-agent messages, leaves through Effectors. Typically
the data leaving the Effectors will be sent from the Executive,
which has just executed a command to send data to the
environment. There may be zero or more Effectors, where
each Effector sends data to specific parts of the agent’s
environment. An Effector may perform data conversions and
act intelligently and in a proactive manner when necessary.
As with the Perceptors, an agent may not have an Effector if it
is not required to interact with the environment.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

7

g) Agent Framework: A framework is used to
provide base functionality for the components as well as the
inter-component communication facility. The framework
allows components to be easily added and removed from the
agent while providing a standard communications interface
and functionality across all components. This makes
developing and adding new components easier and makes new
additions transparent to existing components in the agent.
Each component in the architecture can communicate
information to/from all other components as needed.

The primary communications for components is based on a
publish-and-subscribe model with direct links between
components if large amounts of data need to be transferred.
Components communicate to each other the types of data that
they produce when queried. When one component needs to
be informed of new or changed data in another component, it
subscribes to that data in the other component. Data can be
subscribed to whenever it is changed, or on an as needed
basis. With this mechanism, a component can be added or
removed with no need to modify other components in the
agent.

h) Data Flow Between Components: Consider an
example of how data flows between components of the ACT
architecture when a spacecraft’s battery is discharging. The
scenario reads as follows:
1) The agent detects a low voltage when reading data from

the battery via a Perceptor. The Perceptor then passes the
voltage value to the Modeler, which has subscribed to the
Perceptor to receive all percepts.

2) When the Modeler receives the voltage from the
Perceptor, it updates the value in its model. In this case,
the new value puts it below the normal threshold and
changes the voltage state to “low”, which causes a state
change event, and causes the Modeler to publish the new
value to all subscribing components. Since the Reasoner

is a subscriber, the low voltage value is sent to the
Reasoner.

3) In the Reasoner, the low voltage value fires a rule in the
expert system. This rule calls a method that sends the
Planner/Scheduler a goal to achieve a battery voltage
level that corresponds to a full charge.

4) When the Planner/Scheduler receives the goal from the
Reasoner, it queries the Modeler for the current state of
the satellite and a set of actions that can be performed.

5) After receiving the current state of the satellite and the set
of available actions from the Modeler, the
Planner/Scheduler formulates a list of actions that need to
take place to charge the battery. It then sends the plan
back to the Reasoner for validation.

6) The Reasoner examines the set of actions received from
the Planner/Scheduler and decides that it is reasonable.
The plans are then sent to the Agenda.

7) The Agenda puts the action steps from the plan into a
queue for the Executive.

8) When the Executive is ready to execute a new step, the
Agenda passes it along for execution, in the normal one-
step-at-a-time fashion.

9) The Executive executes each action until the plan is
completed and then notifies the Agenda it is done.

10) The Agenda marks the plan as finished and notifies the
Reasoner that the plan finished successfully.

11) After the plan is executed, the voltage rises and triggers a
state change in the Modeler when the voltage returns to a
fully charged state. At that point the Reasoner is again
notified that a change in a state variable has occurred.

12) The Reasoner then notes the voltage has been restored to
a fully-charged level and marks the goal as accomplished.

2) ACT Operational Scenario

Figure 4 illustrates an operational scenario involving a
possible ACT agent community for a nanosatellite
constellation. It is based on the idea of a ground-based

{ Coordinates the agent community in the MCC, manages mission goals and
coordinates the Contact manager agent}

{ Coordinates ground station activities (one agent per ground station), communicates with
 Spacecraft, sends and receives commands and telemetry }

{ Provides interface and interaction mechanisms to
 the outside world }

{ Plans and schedules contacts with the spacecraft via interface
 with external planner/scheduler (external resource) }

{ There is a proxy agent for each spacecraft in orbit. The agents keep
 track of spacecraft status. The agents will flag the Mission Management
 agent when an anomaly occurs that may need handling }MCC

Manager

Contact
Manager

Agent

S/C
Agent 1
Proxy

S/C
Agent 2
Proxy

S/C
Agent N
Proxy

User
Interface
Agents

Scientists,
Engineers,
Operators

MCC Planning
and Scheduling Agent

Fig. 4. Agent community being developed in ACT to test out the new agent architecture and some community concepts.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

8

community of proxy agents---each representing a spacecraft in
the nanosatellite constellation---which provide for
autonomous operations of the constellation. Other scenarios
for the migration of this community of proxy agents to the
spacecraft are discussed in terms of space-based autonomy
concepts [9].

In the current scenario, there are several nanosatellites in
orbit collecting magnetosphere data. The Mission Control
Center (MCC) makes contact with selected spacecraft when
they come into view according to the schedule. The agents
that make up the MCC are:
• Mission Manager Agent (MMA): coordinates the agent

community in the MCC, manages mission goals, and
coordinates with the Contact Manager Agent.

• Contact Manager Agent (CMA): coordinates ground
station activities, communicates with the spacecraft, and
sends and receives data, commands, and telemetry.

• User Interface Agent: sends data to users for display and
gets commands for the spacecraft.

• MCC Planning/Scheduling Agent: plans and schedules
contacts with spacecraft via external Planner/Scheduler.

• Spacecraft Proxy Agents: keep track of spacecraft status,
health and safety, etc. The proxies notify the Mission
Manager Agent when anomalies occur that need
handling.

Each of the above agents registers with the GCC manager
agent. The GCC manager agent notifies them when a contact
is approaching for their spacecraft, whether another agent is
going to be added to the community, and how to contact
another agent.

The following is a spacecraft contact scenario that
illustrates how the agents work with the GCC manager agent:
• Agents register with the GCC Manager Agent at startup.
• GCC Planner/Scheduler Agent communicates with the

Proxy Agents to get spacecraft pass time data. It then
creates a contact schedule for all orbiting spacecraft.

• GCC Manager Agent receives the schedule from the GCC
Planner/Scheduler Agent and gives details of the next
contact to the Contact Manager Agent.

• The Contact Manager Agent contacts the spacecraft at the
appropriate time and downloads the telemetry and sends it
to the appropriate spacecraft Proxy Agent for processing.

• The spacecraft Proxy Agents process the telemetry data,
update the spacecraft’s status, evaluate any problems and
send any commands to the Contact Manager to upload.

• If a Proxy Agent determines a problem exists and an
extended or extra contact is needed, it sends a message to
the GCC Planner/Scheduler Agent, which re-plans the
contact schedule and redistributes it to the GCC Manager.

• The Contact Manager downloads data from, and uploads
any commands to, the spacecraft as instructed by the
spacecraft Proxy Agent. The Contact Manager agent
ends the contact when scheduled.

An example of a typical contact with a satellite would be:
• The Contact Manager Agent (CMA) receives an

acquisition of signal (AOS) from a spacecraft. The MCC
is now in contact with the spacecraft.

• The CMA requests the spacecraft to start downloading its
telemetry data and sends the data to its proxy agent.

• The proxy agent updates the state of its spacecraft model
from the telemetry received. If a problem exists, the
Mission Manager Agent is contacted and appropriate
action (if any) is planned by the system.

• The Contact Manager Agent analyzes the downloaded
telemetry data. If there is a problem, the CMA may alter
the current contact schedule to deal with the problem.

• The CMA executes the contact schedule to download
data, delete data, or save data for a future contact.

• The Mission Manager Agent ends contact.

Fig 5. : ANTS concept mission.

IV. A CONCEPT AUTONOMOUS AND AUTONOMIC MISSION
The NASA Autonomous Nano-Technology Swarm

(ANTS) mission [10]-[13] will be made up of swarms of
autonomous pico-class (approximately 1kg) spacecraft that
will explore the asteroid belt. There will be approximately
1,000 spacecraft involved in the mission consisting of several
types (Figure 5). Approximately 80 percent of the spacecraft
will be workers (or specialist) which will have a single
specialized instrument onboard (e.g., a magnetometer, x-ray,
gamma-ray, visible/IR, neutral mass spectrometer) and will
obtain specific types of data. Some will be coordinators
(called leaders), and will have rules that determine the types
of asteroids and data the mission is interested in, and will
coordinate the efforts of the workers. The third type of
spacecraft are messengers, which will coordinate
communications between the workers, leaders and Earth.
Each worker spacecraft will examine asteroids it encounters
and send messages back to a leader that will evaluate the data
and send other spacecraft with specialized instruments to the
asteroid to gather further information.

This mission will involve a high degree of autonomy for
reasons to be discussed, and autonomic properties will

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

9

enhance its survivability. To implement this mission a
heuristic approach is being considered that uses an insect
analogy of a hierarchical social structure based on the above
spacecraft hierarchy. A transport ship will assemble the
spacecraft during the journey to the asteroid belt and then
release them upon arrival. Artificial intelligence technologies
such as genetic algorithms, neural nets, fuzzy logic, and on-
board planners are being investigated to assist the mission to
maintain a high level of autonomy. Sub-swarms will be
formed that will act as teams that explore a particular asteroid
based on the asteroid’s characteristics. To examine an
asteroid, spacecraft will need to cooperate since they each
have only a single instrument on board. Crucial to the mission
will be the ability to modify operations autonomously to
reflect the changing goals of the mission, and the distance and
low-bandwidth communications to Earth.

A scenario for the ANTS mission is based on the ANTS
targeting an asteroid on which to perform an experiment and
then forming a team to carry out that experiment. Team
leaders contain models of the types of science they wish to
perform. Parts of this model are communicated to the
messenger spacecraft which relay it on to the worker
spacecraft. The worker spacecraft then take measurements of
asteroids using their specialized instrument until data matches
the goal that was sent by the leader. The data will then be sent
to a messenger to be relayed back to the leader. If the data
matches the profile of the type of asteroid that is being
searched for, an imaging spacecraft will be sent to the asteroid
to ascertain the exact location and to create a rough model
prior to the arrival of other spacecraft, and which they will
use to maneuver around the asteroid.

Other spacecraft would then work together to finish the
model and mapping of the asteroid as well as form virtual
instruments that would include:
• an asteroid detector/stereo mapper team that would

consist of two spacecraft with field imaging
spectrometers, and a dynamic modeler with an enhanced
radio science instrument for measuring dynamic
properties (such as spin, density, and mass distribution)

• a petrologist team that would consist of X-ray, Near
Infrared, Gamma-ray, Thermal IR, and a wide field
imager to determine the distribution of elements, minerals
and rocks present

• a photogeologist team that would consist of Narrow Field
and Wide Field Imagers and Altimeter to determine the
nature and distribution of geological units based on
texture, albedo, color, and apparent stratigraphy

• a prospector team consisting of an altimeter,
magnetometer, near infrared, infrared, and X-ray
spectrometers to determine the distribution of resources

V. ANALYSIS
The following discusses the autonomic properties of the

LOGOS and ACT multi-agent systems and the ANTS asteroid

mission.

A. Autonomic Properties of LOGOS
The operational scenarios of LOGOS exhibit the four

objective autonomic properties, or self-CHOP properties, as a
community.

 LOGOS self-configuration. LOGOS self configures when
the GIFA agent receives signals from the GenSAA/Genie
ground station software that a spacecraft pass is about to
happen. When this occurs, the GIFA configures the system
by waking up the necessary agents for the pass. For example,
if there are no anomalies, then the FIRE agent is not needed
and is not woken up. If it is needed, then LOGOS is
configured for that pass with the FIRE agent up and ready to
receive the anomaly. The same is true for the visualization
agent and the user interface agent. If there is no user logged
on, then those agents do not need to be woken up for the
spacecraft pass.

LOGOS self-optimization. LOGOS self-optimizes itself
through learning. One example of this is through the learning
that the FIRE agent does when it does not know how to fix an
anomaly and notifies an analyst that it needs help. After the
analyst provides a set of commands to fix the anomaly, the
FIRE agent stores those commands and the parameters to that
anomaly in its knowledge base for future reference. In this
way it will be able to fix this problem when it occurs again;
this may also be viewed as being self-healing and illustrates
the interdependency of autonomic properties.

A second way that LOGOS self optimizes is through the
user interface and visualization agents. These agents keep
track of which analyst looks at what data so that that
information would be pre-fetched and available to the analyst
when he or she logs on to the system. This saves time for the
analyst, especially in a critical situation. A third example is
the pager agent, which notifies analysts when an anomaly is
present. This agent also keeps track of information that
specifies which analysts are available at what times, and
modifies who it calls first based on their usual availability.

LOGOS self-healing. LOGOS self-heals primarily through
the actions of the FIRE agent. The FIRE agent examines
anomalies that occur and then issues commands to fix/heal the
anomalies based on its knowledge base. It also self-heals
through the intervention of the human in the loop, who can fill
in information when the FIRE agent does not have the
requisite knowledge to solve a problem. The human is viewed
as part of the overall system architecture. The FIRE agent
also learns how to fix future anomalies based on inputs from
the analyst when the FIRE agent needs help. The self-healing
aspect of LOGOS was its primary function, and is what made
the system “lights-out” and enabled lower costs of future
operations through reduced man-power requirements.

LOGOS self-protecting. The self-protecting aspects of
LOGOS are limited. The self-protection is primarily achieved
by the FIRE and the user interface agent. UIFA performs self-
protection when it authenticates a user logging on to the
system to ensure the user has proper credentials. For the FIRE

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

10

agent, self-protection is accomplished when checking
commands entered by the analyst to ensure they do not harm
the spacecraft, although it can be overridden by the analyst.

B. Autonomic Properties of ACT
The various operational scenarios of ACT exhibit at least

three types of autonomic functionality and some of a fourth.
The autonomic functionalities exhibited are: self-configuring
(adaptation to changing environment), self-optimizing (steps
to maximize utilization), self-healing (ability to recover from
anomalies) and self-protecting (protect against failures). The
following further discusses ACT’s autonomic properties.

ACT self-configuration. As an example of this property,
when ACT detects, from analysis of downloaded telemetry,
that there is a problem, the Contact Manager alters the current
satellite contact schedule to enable the problem to be
addressed. What is being reconfigured, in this case, is the
spacecraft functionality for managing communications
contacts with ground systems and controllers.

ACT self-optimization. As an example of this property,
consider what happens when a Proxy Agent determines that a
problem exists with its associated spacecraft. When this
situation arises, a replanning/rescheduling activity is
performed to optimize the behavior of the entire ACT system.

ACT self-healing. As an example of this, again consider
what happens when a Proxy Agent detects a problem with its
associated spacecraft. Following a diagnosis of the problem
(which may involve access to the human component of the
ACT) corrective actions, in the form of commands, are
generated and made ready for transmission to the affected
spacecraft. This problem-diagnosis/corrective-action cycle is
a major part of ACT’s self-healing capability.

It should be noted that the three autonomic responses
discussed above all stem from ACT’s determination that a
problem has occurred. In attending to the problem, ACT
reconfigures, tries to optimize its operations, and proceeds to
diagnose and solve the identified problem.

ACT self-protection. ACT is self-protecting in the sense
that it constantly monitors the spacecraft systems and modifies
its operations if a parameter ranges outside its normal bounds.
An example of self-protection is given in the above example
of dataflow between components of the architecture. In this
example, the battery is discharging and if nothing is done the
spacecraft will lose power and become inoperable. ACT then
takes the necessary actions to recharge the battery (e.g.,
turning towards the sun). In addition, it also has self
protection through validation of system commands to ensure
that command sequences executed will not harm the
spacecraft or put it in a position where it could be harmed.

C. Autonomic Properties of ANTS
ANTS self-configuration. ANTS has an overall requirement

to prospect thousands of asteroids per year with large but
limited resources. To accomplish this, it is anticipated that
there will be approximately one month of optimal science
operations at each asteroid prospected. A full suite of

scientific instruments will be deployed at each asteroid. The
ANTS mission resources will be configured and re-configured
to support concurrent operations at hundreds of asteroids over
a period of time.

The overall ANTS mission architecture calls for specialized
spacecraft that support division of labor (rulers, messengers)
and optimal operations by specialists (workers). A major
feature of the architecture is support for cooperation among
the spacecraft to achieve mission goals. The architecture
supports swarm-level mission-directed behaviors, sub-swarm
levels for regional coverage and resource-sharing,
team/worker groups for coordinated science operations, and
individual autonomous behaviors. These organizational levels
are not static but evolve and self-configure as the need arises.
As asteroids of interest are identified, appropriate teams of
spacecraft are configured to realize optimal science operations
at the asteroids. When the science operations are completed,
the team disperses for possible reconfiguration at another
asteroid site. This process of configuring and reconfiguring
continues throughout the life of the ANTS mission.

Reconfiguring may also be required as the result of a failure
or anomaly of some sort. Some examples are the following.
A worker may be lost due to collision with an asteroid, failure
of its communication devices, or hardware failure. The loss of
a given worker may result in the role of that worker being
performed by another, which will be allocated the tasks and
resources of the original. Loss of communication with a
worker may mean that the system has to assume loss of the
worker, and the role may be allocated to another spacecraft.
Loss of use of an instrument by a worker may require the
worker to take the role of a communication device.

ANTS self-optimization. Optimization of the ANTS is
undertaken at the individual level, as well as at the system
level. These optimizations are:

• Rulers learning about asteroids
• Messengers adjusting their position
• Workers learning about asteroids

Optimization at the ruler level is primarily through learning.
Over time, rulers will be collecting data on different types of
asteroids and will evolve to be able to better determine the
characteristics of the types of the asteroids that are of interest,
and perhaps the types of asteroids that are difficult to orbit or
extract data from (e.g., an asteroid with a fast rotation that is
difficult to focus on). From this information the system as a
whole is being optimized since time is not being wasted on
asteroids that are not of interest, or too difficult to map.

Optimization for messengers is achieved through
positioning. Messengers need to provide communications
between the rulers and workers as well as back to Earth. This
means that a messenger will have to be constantly adjusting its
position to balance the communications between the rulers
and workers and perhaps adjusting its position to send data to
Earth while also maintaining communications between rulers
and workers.

Optimization at the worker level is primarily through its
experience gained with asteroids. As a worker observes

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

11

asteroids and builds up a knowledge base of the different
characteristics of asteroids, a worker may be able to
automatically skip over asteroids that are not of interest, thus
saving time and optimizing the exploration of the mission as a
whole.

ANTS self-healing. The view of self-healing here is slightly
different from that given in [1]. ANTS is self-healing not only
in that it can recover from mistakes, but self-healing in that it
can recover from failure, including damage from outside
force. In the case of ANTS, these are non-malicious sources:
events such as collision with an asteroid, or another
spacecraft, loss of connection, etc., will require ANTS to heal
itself by replacing one spacecraft with another.

ANTS mission self-healing scenarios span the range from
negligible to severe. An example entailing negligible self-
healing would be an instance where one member of a
redundant set of gamma ray sensors fails before a general
gamma ray survey is planned. In such a scenario, the self-
healing behavior would be the simple action of deleting the
sensor from the list of functioning sensors. At the severe end
of the scale, an example scenario would arise when the team
loses so many workers it can no longer conduct science
operations. In this case, the self-healing behavior might be to
advise the mission control center and, when a replacement
worker arrives, to incorporate the replacement into the team,
performing, additionally, any necessary self-configuration and
self-optimization. In some possible ANTS mission concepts,
instead of “calling home” for help, an ANTS team may only
need to request a replacement from another team or from a
fielded repository of spares orbiting in the vicinity.

Not only the ANTS team, but also ANTS individuals, may
have self-healing behaviors. For example, an individual may
have the capability of detecting corrupted code (software). In
such a case, self-healing behavior would result in the
individual requesting a copy of the affected software from
another individual in the team, which would enable it to
restore itself to a known operational state.

ANTS self-protection. The self protecting behavior of the
team will be interrelated with the self-protecting behavior of
the individual members. The anticipated sources of threats to
ANTS individuals (and consequently to the team itself) will be
collisions and solar storms.

Collision avoidance through maneuvering will be limited,
because ANTS individuals will have limited ability to adjust
their orbits and trajectories, since thrust for maneuvering is
obtained from solar sails. Individuals will have the capability
of coordinating their orbits and trajectories with other
individuals to avoid collisions with them. Given the chaotic
environment of the asteroid belt and the highly dynamic
trajectories of the objects in it, occasional near approaches of
interloping asteroidal bodies (even small ones) to the ANTS
team may present threats of collisions. Collision-avoidance
maneuvering for this type of spacecraft presents a large
challenge and is currently under consideration. The main self-
protection mechanism for collision avoidance is achieved
through the process of planning. The ruler’s plans involve

constraints that will result in acceptable risks of collisions
between individuals when they carry out the observational
goals given by the ruler. In this way, ANTS exhibits a kind of
self-protection behavior against collisions.

Another possible ANTS self-protection mechanism could
protect against effects of solar storms. Charged particles from
solar storms could subject individuals to degradation of
sensors and electronic components. The increased solar wind
from solar storms could also affect the orbits and trajectories
of the ANTS individuals and thereby jeopardize the mission.
ANTS mechanisms that are protective against effects of solar
storms have not been determined or included in the mission
design. One possible mechanism would involve a capability
of the ruler to receive a warning message from the mission
control center on Earth. An alternative mechanism would be
to provide rulers with a solar storm sensing capability through
on-board, direct observation of the solar disk. When the ruler
recognizes a solar storm threat exists (either upon receipt of a
solar storm warning from the control center or upon reaching
its own conclusion from direct observations), the ruler would
invoke its goal to protect the mission from harm from the
effects of the solar storm. In addition to its own action to
protect itself, part of the ruler’s response would be to give
workers the goal to protect themselves. Part of an individual’s
protective response might be to orient solar panels and sails to
minimize impact of the solar wind. An additional response
might be to power down subsystems to minimize disruptions
and damage from charged particles.

Thus, with such capabilities, an ANTS mission will exhibit
self-protecting behavior. As noted in the section on self-
configuring behavior, after-effects of protective action will, in
general, necessitate ANTS self-reconfiguration. For example,
after solar sails had been trimmed for the storm blast of solar
wind, individuals will have unplanned trajectories, which will
necessitate trajectory adjustments and replanning and perhaps
new goals. Further, in case of the loss of individuals due to
damage by charged particles, the ANTS self-healing behavior
and the self-optimizing behavior may also be triggered. Thus,
there is an interrelatedness of the self-protecting behaviors of
the ANTS team and the ANTS individuals.

D. Lessons Learned

Whereas LOGOS demonstrated that typical control center
activities could be emulated by a multi-agent system, the
major objective of the ACT project was to demonstrate that
ground-based surrogate agents, each representing a spacecraft
in a group of spacecraft, could control the overall dynamic
behaviors of the group of spacecraft in the realization of some
global objective. The ultimate objective of ACT was to help
in the understanding of the idea of progressive autonomy
which would, as a final goal, allow the surrogate agents to
migrate to their respective spacecraft and then allow the group
of autonomous spacecraft to have control of their dynamic
behaviors independent of relying on ground control.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

12

ACT correctly emulated the correct interaction between
surrogate agents and their respective spacecraft. This
“correctness” was determined by comparison between what
the surrogate did versus what a human controller on the
ground would have done, in conjunction with what the
controllers associated with the other surrogates would have
done, to achieve a global objective. This analysis was
undertaken more at the heuristic level than at a formal level.
The design of the surrogates was realized in a modular
fashion. This design was performed in this fashion in order to
support the concept of incremental placement of the functional
capabilities of the surrogate agent in the respective spacecraft,
until the spacecraft was truly agent-based and “autonomous”.
This particular aspect of the ACT project was heuristically
realized but not rigorously (formally) tested out.

E. Verification & Correctness
The fact that the “correctness” of ACT (which was after all

a prototype system) was heuristically realized rather than
formally, or even systematically, verified raises an issue:
Given that NASA is moving towards more complex systems
based on the idea of swarm technologies and moving from
self-direction to self-governance, how can we be assured of
the correctness of these systems?

The use of formal methods has been identified as a means
of dealing with this complex problem. Formal approaches
were previously used in the specification and verification of
the LOGOS system. A formal specification in CSP
highlighted a number of errors and omissions in the system.
These, and other, errors were also found by an automated tool
[22] which implements a NASA patent-pending approach to
requirements-based programming [23].

Mission such as ANTS, however, pose even greater
problems: large numbers of interacting components, emergent
behavior, evolving behavior (due to learning) with the same
behavior patterns unlikely to be repeated, and extremely
complex functionality. While ANTS is currently still a
concept mission, it is likely that it and other swarm-based
approaches will form the basis of many future NASA
exploration missions, so the need to address these issues is
likely to become more significant in the future [21].

Formal Approaches to Swarm Technologies (FAST) is a
current NASA project to examine the issues in formally
specifying and verifying swarm-based systems. The project
has looked at several potential approaches for specifying
swarm, using ANTS as its testbed, and is developing a hybrid
formal method that will be most appropriate for use in the
development of such systems [19], [20].

VI. CONCLUSIONS
NASA missions represent some of the most extreme

examples of the need for survivable systems that cannot rely
on support and direction from humans while accomplishing
complex objectives under dynamic and difficult
environmental conditions. Future missions will embody

greater needs for longevity in the face of significant
constraints, in terms of cost and the safety of human life.
Future missions also will have increasing needs for
autonomous behavior not only to reduce operations costs and
overcome practical communications limitations (signal
propagation delays and low data rates), but also to overcome
the inability of humans to perform long-term missions in
space. There is an increasing realization that future missions
must be not only autonomous, but also exhibit the properties
of autonomic systems for the survivability of both individuals
and systems.

As described, the LOGOS and ACT architectures provide
for a flexible implementation of a wide range of intelligent
and autonomic agents. The ACT architecture allows for easy
removal of components not needed for reactive agents, and the
inclusion of the necessary components to implement
intelligent and autonomic agents. It is also flexible so that
additional unforeseen needs can be satisfied by new
components that can be added without affecting previous
components.

The ultimate goal of our work is to transition proven agent
and autonomic technology into operational NASA systems.
The implementation of the scenarios discussed above (and
others under development) will provide an opportunity to
exercise, evaluate, and refine the capabilities supported by the
agent architectures. It will also provide an opportunity for
space mission designers and developers to “see” agent and
autonomic technology in action and their resulting benefits.
This will enable them to make a better determination of the
role that this technology can play in their missions.

We have illustrated the interrelationship of autonomous and
autonomic systems with reference to two existing NASA
prototype systems, namely ACT and LOGOS, and have
examined the relationship for a future mission, ANTS. It is
clear that the separation of autonomy and autonomicity as
mission characteristics will decrease in the future and
eventually will become negligible, with autonomicity being
essential to move from self-direction to self-governance.

ACKNOWLEDGMENT
This work was supported in part by the NASA Office of

Safety and Mission Assurance (OSMA) Software Assurance
Research Program (SARP) project Formal Approaches to
Swarm Technologies (FAST) and managed by the NASA
Independent Verification and Validation (IV&V) Facility, and
by NASA Headquarters Code R.

This paper is based in part on [14] and [15].

REFERENCES
[1] R. Murch, Autonomic Computing. IBM Press, 2004.
[2] C. Rouff, A. Vanderbilt, M. Hinchey, W. Truszkowski, and J. Rash.

Properties of a Formal Method for Prediction of Emergent Behaviors in
Swarm-based Systems. 2nd IEEE International Conference on Software
Engineering and Formal Methods. Beijing, China, 26-30 Sept., 2004.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

13

[3] W. Truszkowski, and C. Rouff, “An overview of the NASA LOGOS and
ACT agent communities,” 5th World Multiconference on Systemics,
Cybernetics, and Informatics (SCI 2001), Orlando, Florida, July 22-25,
2001.

[4] W. Truszkowski and H. Hallock, “Agent technology from a NASA
perspective.” CIA-99, Third Int. Workshop on Cooperative Information
Agents, Springer-Verlag, Uppsala, Sweden, 31 July - 2 August 1999.

[5] J. Ferber, Multi-agent systems, An introduction to distributed artificial
intelligence. Addison-Wesley, 1999.

[6] M. Wooldridge, “Intelligent Agents”, in Multiagent Systems, Gerhard
Weiss, Ed. MIT Press, 1999.

[7] P. Hughes, G. Shirah, and E. Luczak, “Advancing Satellite Operations
with Intelligent Graphical Monitoring Systems, in:AIAA Computing in
Aerospace Conference, San Diego, CA, Oct. 19-21, 1993.

[8] “FIPA Specification Part 2: Agent Communication Language”,
Foundation for Intelligent Physical Agents (FIPA), Geneva, Switzerland,
November 28, 1997.

[9] W. Truszkowski and C. Rouff. “A Process for Introducing Agent
Technology into Space Missions.” In Proc. IEEE Aerospace
Conference, March 11–16, 2001.

[10] P. E. Clark, S. A. Curtis, and M. L. Rilee, “ANTS: Applying a New
Paradigm to Lunar and Planetary Exploration”, in Proc. Solar System
Remote Sensing Symposium, Pittsburg, 2002.

[11] S. A. Curtis, J. Mica, J. Nuth, G. Marr, M. Rilee, and M. Bhat, “ANTS
(Autonomous Nano-Technology Swarm): An Artificial Intelligence
Approach to Asteroid Belt Resource Exploration”, in Proc. International
Astronautical Federation, 51st Congress, October 2000.

[12] S. Curtis, W. Truszkowski, M. Rilee, and P. Clark, “ANTS for the
Human Exploration and Development of Space”, in Proc. IEEE
Aerospace Conference, 2003.

[13] M. L. Rilee, S. A. Boardsen, M. K. Bhat, and S. A. Curtis, “Onboard
Science Software Enabling Future Space Science and Space Weather
Missions”, in Proc. 2002 IEEE Aerospace Conference, Big Sky,
Montana, 9-16 March 2002.

[14] W. Truszkowski, J. Rash, C. Rouff and M. Hinchey, “Asteroid
Exploration with Autonomic Systems”, in Proc. 11th IEEE International
Conference and Workshop on the Engineering of Computer-Based
Systems (ECBS), Workshop on Engineering of Autonomic Systems
(EASe), Brno, Czech Republic, IEEE Computer Society Press, 24-27
May 2004, pp 484-489.

[15] W. Truszkowski, J. Rash, C. Rouff and M. Hinchey, “Some Autonomic
Properties of Two Legacy Multi-Agent Systems - Logos and ACT”, in
Proc. 11th IEEE International Conference and Workshop on the
Engineering of Computer-Based Systems (ECBS), Workshop on
Engineering of Autonomic Systems (EASe), Brno, Czech Republic, IEEE
Computer Society Press, 24-27 May 2004, pp 490-498.

[16] T. Ames and S. Henderson, “The Workplace Distributed Processing
Environment”, in Proc. 1993 Goddard Conference on Space
Applications of Artificial Intelligence, NASA Goddard Space Flight
Center, Greenbelt, Maryland, USA. NASA Conference Publication
3200. May 10-13, 1993, pp. 181-188.

[17] R. Sterritt, C. A. Rouff, J. Rash, W. Truszkowski and M. Hinchey, “Self-
* Properties in NASA Missions”, in Proc. Software Engineering
Research and Practice (SERP 2005), Las Vegas, NV, 26-30 June 2005.

[18] C. Rouff, J. Rash and M. Hinchey, “Experience using Formal Methods
for Specifying a Multi-agent System”, in Proc. 6th IEEE International
Conference on Engineering of Complex Computer Systems (ICECCS
2000), Tokyo, Japan, IEEE Computer Society Press.

[19] C. Rouff, A. Vanderbilt, M. Hinchey, W. Truszkowski, and J. Rash.
Properties of a Formal Method for Prediction of Emergent Behaviors in
Swarm-based Systems. 2nd IEEE International Conference on Software
Engineering and Formal Methods. Beijing, China, 26--30 Sept., 2004.

[20] C. Rouff, M. Hinchey, J. Rash, W. Truszkowski, A Survey of Formal
Methods for Intelligent Swarms, Technical Report, NASA Goddard
Space Flight Center, 2005.

[21] M.G. Hinchey, J.L. Rash, W.F. Truszkowski, C.A. Rouff and R. Sterritt,
“Autonomous and Autonomic Swarms”, in Proc. Software Engineering
Research and Practice (SERP 2005), Las Vegas, NV, 26—30 June
2005.

[22] J. Rash, M. Hinchey, C. Rouff, D. Gracanin, “Experiences with a
Requirements-Based Programming Approach to the Development of a
NASA Autonomous Ground Control System”, Proceedings of IEEE
Workshop on the Engineering of Autonomic Systems (EASe 2005) at

12th Annual IEEE International Conference and Workshop on the
Engineering of Computer Based Systems (ECBS 2005), Greenbelt, MD,
USA, 4--7 April, 2005, pp 490--497, IEEE Computer Society Press .

[23] M.G. Hinchey, J.L. Rash and C.A. Rouff, “A Formal Approach to
Requirements-Based Programming”, in Proc. 12th International
Conference on Engineering of Computer-Based Systems (ECBS 2005),
Greenbelt, MD, 4--7 April 2005, pp 339—345, IEEE Computer Society
Press.

Walter F Truszkowski (M’00) received the M.S. degree in Computer
Science from the University of Maryland, USA, and the B.A. degree in
Mathematics from Loyola College, USA.
 He is currently the Senior Technologist in the Advanced Architectures and
Automation Branch located at NASA Goddard Space Flight Center. He is the
author of move than 30 technical papers and book chapters, and has edited 4
books. His current research interests are in the areas of formal methods,
agent/multi-agent systems, swarm technologies, evolutionary robotics,
autonomic computing and the semantic web.
 Mr. Truszkowski is a Member of the IEEE, ACM, AAAI and the AIAA
where he serves on the Technical Committee for Autonomous Systems

Michael G. Hinchey (M’91–SM’01) received the Ph.D. in Computer Science
from University of Cambridge, UK, the M.Sc. degree in Computation from
University of Oxford, UK, and the B.Sc. degree in Computer Science from
University of Limerick, Ireland.
 He is currently Director of the NASA Software Engineering Laboratory,
located at Goddard Space Flight Center. Prior to joining the US Government,
he held academic positions at the level of Full Professor in the USA, UK,
Ireland, Sweden and Australia. He is the author of move than 70 technical
papers, and 15 books. His current research interests are in the areas of formal
methods, system correctness, and agent based technologies.
 Dr. Hinchey is a Senior Member of the IEEE, a Fellow of the IEE and the
British Computer Society. He is a Chartered Engineer, Chartered Professional
Engineer, Chartered Information Technology Professional and Chartered
Mathematician. He is currently Chair of the IEEE Technical Committee on
Complexity in Computing, and is the IEEE Computer Society’s voting
representative to IFIP TC1.

James L. Rash (M’87) received the M.A. in Mathematics from the University
of Texas at Austin, USA, and the B.A. degree in Mathematics and Physics
from the University of Texas at Austin, USA.
 He currently leads formal methods research and development in the
Advanced Architectures and Automation Branch at the NASA Goddard Space
Flight Center, where his other major responsibilities include managing the
Operating Missions as Nodes on the Internet (OMNI) Project. He has
authored/co-authored move than 25 technical papers and articles, co-edited
three books, and edited eight journal special issues, and has been an organizer
of more than 15 conferences and workshops on artificial intelligence, formal
methods, and Internet technologies for space missions. His current research-
interest areas are formal methods and agent-based technologies.
 Mr. Rash is a Member of the IEEE.

Christopher Rouff received the Ph.D. in Computer Science from the
University of Southern California, a M.S. in Computer Science from
University of California, Davis and a B.A. in Mathematics/Computer Science
from California State University, Fresno.
 He is currently a senior scientist in the Advanced Concepts Business Unit
at Science Applications International Corporation. He is currently doing
research and development on multi-agent systems, verification of intelligent
systems and collaborative robotics for NASA and DARPA. Previously he was
with NASA Goddard for nine years where he researched and prototyped
cooperative multi-agent systems for ground and spaceflight applications and
led a number of software research and development projects.
 Dr. Rouff has over forty publications and twenty years of experience in
software engineering and intelligent systems.

